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R. Q. Jia (J. Approx. Theory 39 (1983), 11�23), proved that the discrete spline
collocation matrix was totally positive, and he also gave necessary and sufficient
conditions for when a minor has a positive determinant. By a counterexample, it is
shown in this paper that his necessary and sufficient conditions are not quite
correct. The correct form of the theorem is then established. � 1996 Academic Press, Inc.

1. Introduction and Preliminary Results

In Theorem 1 in [2], Jia proved that the discrete B-spline collocation
matrix is totally positive, and he also gave necessary and sufficient conditions
for a minor to be strictly positive. However, these conditions are not quite
correct. In this paper, we first give a counterexample to Jia's result and
then establish the correct necessary and sufficient conditions for positivity
of a minor.

In the rest of this section we introduce the concepts that are necessary
to study the total positivity of discrete B-splines. We then state Jia's result
and give a counterexample before we present the correct version of the
theorem. Section 2 is devoted to the proof of the theorem, and in Section 3
we give some consequences and applications of the result.

Discrete B-splines can be defined and studied in their own right, but the
main motivation comes from traditional spline theory. Let k be a positive
integer, and let t=(ti)

�
i=&� be a bi-infinite sequence of real numbers with

ti<ti+k for all i. (We will only use finite parts of the knot vectors; the
assumption of bi-infinity is only for notational convenience.) We can then
associate the usual polynomial B-splines [Bi, k, t]�

i=&� with t, right con-
tinuous and normalized to sum to one. It is well known that these B-splines
provide a basis for the linear space Sk, t of piecewise polynomials of order
k with joins at the knots in t (it tz occurs m times in i, then an element f
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of Sk, t will have k&m&1 continuous derivatives in a neighbourhood of
tz , but the derivative of order k&m may be discontinuous).

To introduce discrete B-splines, let { be a bi-infinite subsequence of t. We
then have Sk, { �Sk, t , so that any B-spline Bj, k, { associated with { can be
written as a linear combination of the B-splines in Sk, t ,

Bj, k, {=:
i

:j, k, { , t(i) Bi, k, t . (1)

The functions [:j, k, { , t]j , defined on the integers Z, are called discrete
B-splines (we will often shorten :j, k, { , t(i) by omitting some of the subscripts
when there is no chance of ambiguity). Discrete B-splines have many
properties similar to B-splines; see [2, 3]. We mention in particular that
they obey a recurrence relation very similar to the recurrence relation for
B-splines, and this recurrence leads to stable algorithms for computing
discrete B-splines. Given the coefficients (cj) of a spline relative to the
B-splines in Sk, { , we can compute its coefficients (di) relative to the
B-splines in Sk, t via the formula di=�j cj:j (i), which is immediate from
(1). This process of refining the knot vector is often called knot insertion
or subdivision, and is of fundamental importance in most applications of
splines.

In this paper we are going to study the discrete B-spline collocation
matrix, A{, t (often shortened to A) with elements given by (A) i, j=:j (i), i.e.,

. . . b b b } } }

} } } :&1(&1) :0(&1) :1(&1) } } }

A=\ } } } :&1(0) :0(0) :1(0) } } } + . (2)

} } } :&1(1) :0(1) :1(1) } } }

} } } b b b
. . .

That A is totally positive means that for any two increasing integer sequences
i1<i2< } } } <im and j1<j2< } } } <jm of length m�1, the submatrix of A
given by

A _ i1 , ..., im

j1 , ..., jm&=\
:j1

(i1)
:j1

(i2)
b

:j1
(im)

:j2
(i1)

:j2
(i2)
b

:j2
(im)

} } }
} } }
. . .
} } }

:jm
(i1)

:jm
(i2)
b

:jm
(im)+

has nonnegative determinant,

det A _ i1 , ..., im

j1 , ..., jm&�0.
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The proof of this is quite straightforward; the challenge is to determine
exactly when the determinant is strictly positive.

In special cases the value of a B-spline and its derivatives can be
obtained from discrete B-splines. We will use this in the last section of the
paper to deduce the Schoenberg�Whitney theorem for B-splines and
related results from the total positivity result for discrete B-splines. In this
respect, the following lemma will be useful.

Lemma 1. Suppose that k�2 and that t is a knot vector. Suppose also
that the knot ti satisfies ti�ti+1= } } } =ti+k&r&1<ti+k&r for some r<k,
and that a=ti+1. If f=�j cjBj, k, t , then

f (r)(a)=Dk&rDk&r+1 } } } Dk&1ci , (3)

where

Dn dj={(dj&dj&1)�((tj+n&tj)�n),
0,

if tj<tj+n ;
otherwise;

for n=k&1, k&2, ..., k&r. In particular, if { is a subsequence of t, then

B (r)
j, k, {(a)=Dk&r Dk&r+1 } } } Dk&1:j, k(i). (4)

Proof. By elementary properties of B-splines, we have that Bj, k&r, t(a)=$i, j

for fixed a=ti+1. On the other hand, from the well-known differentiation
formula for B-splines, we have

f (r)(x)=:
j

(Dk&r } } } Dk&2Dk&1cj) Bj, k&r, t (x).

From this (3) follows. The relation (4) results when (3) is applied to (1). K

As in discussions of many other properties of discrete B-splines, we need
some simple functions that count various multiplicities of knots.

Definition 2. The expressions m t , l t (i), and r t (i) denote the total
number of occurrences of the real number x in the knot vector t; the number
of knots in t equal to ti , but with index less than i; and the number of knots
in t equal to ti , but with index greater than i; respectively. More formally,
we have

m t (x)=max[q&p | tq�x and x�tp+1]

l t (i)=max[ p | ti&p=ti]

r t (i)=max[ p | ti+p=ti].
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These quantities are called the multiplicity of x in t, the left multiplicity of
ti in t, and the right multiplicity of ti in t, respectively.

Note that with this notation we have the relations

ti&l t(i)&1<ti&l t(i)=ti=ti+r t(i)<ti+rt(i)+1 , (5)

which can be verified directly.
With the multiplicity counting functions we can also conveniently state

some results which characterize the support properties of discrete B-splines
which we will need later. We single out the special cases where there are
none or only one more knot in t than in {. For proofs, see, for example,
[2]. The phrase ``The knot vector { is formed by dropping an entry tz

from {'' is used repeatedly below. The precise meaning of this is that {i=ti

for i<z and {i=ti+1 for i�z.

Lemma 3. If the knot vectors { and t are identical, then

:j (i)=$i, j={1,
0,

if i=j;
otherwise.

If the knot vector { is formed by dropping an entry tz from t, then

:j (i)=0, for j<i&1 or j>i;

:i&1(i)�0, with strict inequality iff ti+k>tz ;

:i (i)�0, with strict inequality iff ti<tz .

Lemma 4. Let t and { be knot vectors for splines of order k such that {
is a subsequence of t. Then

:j (i)�0,

with equality if and only if one of the following four cases occurs:

(i) ti<{j ;

(ii) ti={j and r t (i)>r { ( j);

(iii) ti+k>{j+k ;

(iv) ti+k={j+k and l { ( j+k)<l t (i+k).

We will need one more property of knot insertion. This property is simple,
but powerful, and basically says that the order in which knots are inserted
is irrelevant; see [2].
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Lemma 5. Suppose that \ is a subsequence of t and that { is a subsequence
of \. Then

:j, k, { , t(i)=:
l

:l, k, \ , t(i) :j, k, { , \(l ),

A { , t =A\ , t A { , \ ,

and

det A { , t _ i1 , ..., im

j1 , ..., jm&= :

(!i)
m
i=1 # Zm

!1< } } } <!m

det A\ , t _ i1 , ..., im

!1 , ..., !m& det A { , \ _!1 , ..., !m

j1 , ..., jm & .

2. A Counterexample and the Corrected Result

Let us now turn to Jia's theorem 1. We first state the result and give a
counterexample and then give a corrected version. With our notation,
Theorem 1 of [2] can be expressed as follows.

(Jia [2]). Let k be a positive integer, let t be a knot vector with ti<ti+k

for all i, and let { be a subsequence of t. Let i1<i2< } } } <im and
j1< j2< } } } < jm be two increasing integer sequences. Then

det A _ i1 , ..., im

j1 , ..., jm&�0,

with strict positivity if and only if both of the following conditions are
satisfied:

(i) :jq(iq)>0 for q=1, 2, ..., m.

(ii) If for some q, the multiplicity of tiq in t is greater than the multi-
plicity of tiq in {, that is, m { (tiq)<m t (tiq), then

iq&dq<iq&dq , (6)

where dq=k&r t (iq).

(In [2], the inequality m { (tiq)<m t (tiq) has been replaced by the equality
m{(tiq)=m t(tiq). This is a misprint as is apparent from studying the ``proof ''
of the theorem.)
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It is condition (ii) of the theorem that is not quite correct. This condition
turns out to be too weak to assure positivity of the determinant in all cases.
Consider quadratic splines (k=3) on the knot vectors

{=(0, 0, 0, 3, 3, 3), t=(0, 0, 0, 2, 2, 2, 3, 3, 3).

Then it is a simple matter to compute the collocation matrix A as

1 0 0

1�3 2�3 0

A=\1�9 4�9 4�9+ .
1�9 4�9 4�9
0 1�3 2�3
0 0 1

From this it is immediately evident that, unlike in the case of continuous
splines, it is not sufficient for positivity of a minor that the diagonal is
positive, since rows 3 and 4 are equal. The purpose of condition (ii) in Jia's
result is to ensure that such linear dependencies do not occur in

V=A_ i1 , ..., im

j1 , ..., jm& .

In this particular case we see that if iq=4, then we have dq=1, and the
inequality (6) reads iq&1<iq&1=3. This inequality therefore makes sure
that row 3 of A does not occur together with row 4, in a positive minor.

Let us now turn to a counterexample. Choose i1=2, i2=3, i3=5 and
j1=1, j2=2, j3=3. The submatrix is then

1�3 2�3 0

V=A _ i1 , i2 , i3

j1 , j2 , j3&=\1�9 4�9 4�9+ .

0 1�3 2�3

We observe that condition (i) of Jia's result is satisfied. Moreover, since
m t (ti1)=m t (ti2)=m { (ti1)=m { (ti2), condition (ii) only applies to i3 . Here
we find r t (i3)=1 and d3=3&1=2, so that the condition is

2=i1<i3&2=3,

which is certainly satisfied. Therefore both conditions (i) and (ii) are
satisfied, but the determinant is still 0, since v2=(v1+2v3)�3, where v1 , v2 ,
and v3 denote the three rows of V.

The correct version of the theorem is slightly more complicated than
Jia's statement.
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Theorem 6. Let k be a positive integer, let t be a knot vector with
ti<ti+k for all i, and let { be a subsequence of t. Let i1<i2< } } } <im and
j1< j2< } } } < jm be two increasing integer sequences. Then

det V=det A _ i1 , ..., im

j1 , ..., jm&�0,

with strict positivity if and only if both of the following conditions are
satisfied:

(i) The diagonal of V is positive, i.e.,

:jq(iq)>0 for q=1, 2, ..., m.

(ii) If for some q, the multiplicity of tiq in t is greater than the multi-
plicity of tiq in {, that is, m { (tiq)<mt(tiq), then

iq&dq<iq&dq&fq ,

where
dq=k&r t (iq)

and
fq=min[l t (iq), m t (tiq)&m {(tiq)&1].

If l t (iq)=0 or m t (tiq)&m { (tiq)=1 for all q such that m { (tiq)<m t (tiq),
then condition (ii) in Jia's result and Theorem 6 are identical. Note also
that if the sequence (iq) is too short for iq&dq to be defined, then condition
(ii) of Theorem 6 is automatically satisfied.

3. A Proof of the Corrected Result

In the rest of the paper, we will refer back to Theorem 6 many times,
especially the two conditions for positivity of the minor. Let us name these
as C1 and C2.

In Theorem 6, we have introduced a new parameter fq that fits into the
relations in (5),

ti&l t(i)&1<ti&l t(i)=ti=ti+r t(i)&fq=ti+r t(i)<ti+rt(i)+1 . (7)

These relations will be used many times in the proof of Theorem 6.
Another simple observation that will be important is that if (iq)q is a non-
decreasing sequence then iq&p�iq&p for all positive integers p such that
iq&p is defined.
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Before entering into the proof, let us identify some special cases where
C2 is redundant. This will reveal more of the significance of this condition
and also be useful in the proof of Theorem 6.

Corollary 7. In the following two special cases, C1 of Theorem 6
implies C2:

(a) There is only one more knot in t than in {.

(b) For all q such that m{(tiq)<m t(tiq), the number iq satisfies tiq<tiq+1.

Proof. Let us start with case (a). Let tz be the new knot and suppose
that tiq=tz and that the diagonal is positive. Then :jq(iq)>0, so that by
Lemma 3, we must have

jq=iq&1. (8)

Suppose that C2 does not hold, i.e., that iq&dq=iq&dq . From the definition
of dq in Theorem 6 and from Definition 2, we see that this is equivalent to
iq&dq+k=iq+r t (iq), so that tiq&dq+k=tz ; see (7). Since :jq&dq

(iq&dq)>0,
this, combined with Lemma 3, means that

jq&dq=iq&dq=iq&dq . (9)

But (8) and (9) now give jq&jq&dq=dq&1 which is impossible since the
sequence ( jq)q is strictly increasing.

In case (b), we see that we must have r t (iq)=0 and therefore dq=k.
Assuming again that the diagonal is positive, we deduce from :jq(iq)>0
and Lemma 4 that

{jq�tiq . (10)

On the other hand, if C2 does not hold and m { (tiq)<m t (tiq), we have
iq&k�iq&k&fq or iq&k+k�iq&fq . The inequality :jq&k(iq&k)>0, com-
bined with Lemma 4, gives {jq&k+k>tiq (it is not possible to have
{jq&k+k=tiq since we would then need l { ( jq&k+k)�l t (iq&k+k)�
l t (iq&fq)=m{(tiq)). Since the sequence ( jq)q is strictly increasing, we must
have jq�jq&k+k, and therefore {jq>tiq which contradicts (10). K

In order to prove Theorem 6, we follow an approach similar to that in
[2]. The fact that all minors of A are nonnegative is a consequence of
Lemma 5 (it is simple to check if there is only one more knot in t than in {,
and the general case then follows by induction). The difficult part is to
determine exactly when a minor is positive. For convenience, we list the
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different steps as lemmas. We first show that if C1 is violated, the submatrix
of A that we are considering,

V=A_ i1 , ..., im

j1 , ..., jm& ,

is singular.

Lemma 8. If C1 does not hold, then V is singular.

Proof. This follows from standard arguments (see [2]), but for com-
pleteness we reproduce the proof here. Let :jq(iq) be a zero diagonal entry
in V. Then we must either have

:jr(is)=0 for 1�r�q�s�m,

or

:jr(is)=0 for 1�s�q�r�m.

In the first case, the m&q+1 last rows of V must be linearly dependent
since only the last m&q entries of each row can be nonzero. Similarly, in
the second case, the first q rows of V must be linearly dependent. K

Lemma 9. If C2 does not hold, then V is singular.

Proof. Let s be the sequence of knots that are in t but not in {, i.e., all
distinct x in t occur m t (x)&m { (x) times in s. The knots in s can con-
veniently be called the new knots. The proof is by induction on *s, the
length of the sequence s (the number of new knots).

If *s=0, then {=t, so that C2 never applies.
If *s=1, then case (a) in Corollary 7 shows that if C2 does not hold

then neither does C1, so that by Lemma 8 we find that V must be singular.
Suppose now that *s�2 and that we have established the result for

knot vectors where the number of new knots is smaller than *s. Let tiq=tz

be such that m { (tz)<m t (tz) and iq&dq�iq&dq&fq . Form the knot vector
\ by dropping tz from t. Then we know from Lemma 5 that

det A { , t _ i1 , ..., im

j1 , ..., jm&= :
!1< } } } <!m

det A \ , t _ i1 , ..., im

!1 , ..., !m& det A { , \ _!1 , ..., !m

j1 , ..., jm & .

Let us for simplicity set

B! =A { , t _ i1 , ..., im

!1 , ..., !m& , C! =A{ , \ _!1 , ..., !m

j1 , ..., jm & .
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Assuming the induction hypothesis holds, we will show that for all strictly
increasing integer sequences ! we either have det B !=0 or det C!=0.

From Lemma 3 and Lemma 8 we know that if !q{iq&1, then
:!q, k, \ , t(iq)=0 so that det B! =0. We therefore only need to check the
case !q=iq&1. Note that we always have iq&dq�iq&dq so that
iq&dq+k�iq+r t(iq). From (7) we therefore conclude that tiq&dq+k�tz , and
Lemma 3 then shows that det B! =0 unless !q&dq=iq&dq .

To complete the proof, it suffices to show that if !q=iq&1 and
!q&dq=iq&dq , then det C! =0. Denote by d� q and f� q the parameters of C2
for the discrete B-splines with respect to the knot vectors { and \. Then we
see that d� q=dq since r t (iq)=r \ (!q). Therefore, if fq=0 we have

!q=iq&1, !q&dq=iq&dq=iq&dq=!q&dq+1,

which contradicts the fact that (!q)q is a strictly increasing sequence.
If fq>0 we will show that C2 cannot hold for C! . Since fq>0 we have

l t (iq)>0, and, hence, \!q=tiq . Since in addition !q=iq&1, we conclude
that f� q=fq&1. We therefore find

!q&d� q=!q&dq=iq&dq�iq&dq&fq=!q&dq&( fq&1)=!q&d� q&f� q .

Thus, we see that C2 is not satisfied on the reduced knot vector \, and
therefore, by the induction hypothesis, we have det C! =0. K

The final step in the proof of Theorem 6 is to show that if both Condi-
tions (i) and (ii) hold then the matrix is nonsingular.

Lemma 10. If C1 and C2 hold, then det V>0.

Proof. We first observe that we may assume V to be at least tri-diagonal, i.e.,

:jr+1
(ir)>0 for r=1, 2, ..., m&1;

(11)
:jr&1

(ir)>0 for r=2, 3, ..., m.

For suppose, for example, that :jq+1
(iq)=0 for some q. Because of the

support properties of discrete B-splines (Lemma 4), and since the diagonal is
assumed to be positive, we see that in this case V is block lower triangular.
Its determinant is therefore given by the product of the determinants of the
diagonal blocks,

det V=det A _i1 , ..., im

j1 , ..., jm&=det A _i1 , ..., iq

j1 , ..., jq& det A _iq+1 , ..., im

jq+1 , ..., jm& ,
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and V is nonsingular if and only if both of the diagonal blocks are non-
singular. The case that some :jq&1

(iq)=0 leads to a block upper triangular
matrix and can be treated similarly.

In this way we can reduce the dimension of the matrix under consideration
until it satisfies (11), or we end up with m=1, in which case the non-
singularity is trivial. In the rest of the proof we can therefore assume that
(11) holds.

The proof of Lemma 10 is again by induction on the number of new
knots, so let s be the sequence of new knots, as in the proof of Lemma 9.
If *s=0, then {=t so that we must have V=I, the identity matrix of
order m (here we do not need to use (11)).

If *s=1, then by Lemma 3 and (11), we see that we can assume m=1,
in which case the nonsingularity is trivial.

For the general case, let tz be the first knot in s and form the knot vector
\ by dropping tz from t. As in the proof of Lemma 9, we use Lemma 5 and
find

det V=det A { , t _i1 , ..., im

j1 , ..., jm&
= :

!1< } } } <!m

det A \ , t _ i1 , ..., im

!1 , ..., !m& det A { , \ _!1 , ..., !m

j1 , ..., jm &. (12)

Since we know that all minors are nonnegative, it is sufficient to exhibit a
set of !r 's such that the corresponding product in the sum in (12) is
positive. As in the proof of Lemma 9, let us introduce the matrices

B! =A\ , t _ i1 , ..., im

!1 , ..., !m&, C! =A { , \ _!1 , ..., !m

j1 , ..., jm &.

From Lemma 3 we see that in order to have det B ! >0, we must have
!r=ir&1 for all r such that tir�tz . Also !r=ir for all r with tir+k�tz . In
other words, if we define l and u by l=z+r t (z)&k and u=z&l t (z),
which by (7) is equivalent to

tz=tl+k<tl+k+1 , tu&1<tu=tz ,

then we must have !r=ir for ir�l and !r=ir&1 for ir�u. Thus, we see
that if ir0+r=l+r for r=0, 1, ..., u&l for some r0 , then there is no increas-
ing set of integers (!r) such that det B ! >0. This is because we must have
!r0

=ir0
and !r0+u&l=ir0+u&l&1, and, hence, !r0+u&l&!r0

=u&l&1 so
that ! cannot be strictly increasing. In order to obtain det B ! >0, there
must, therefore, be gaps in the sequence (ir) between l and u. These gaps
are given by the set

G(l, u)=[ j | l� j�u and ir{j for r=1, 2, ..., m]. (13)
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If G(l, u) is nonempty, let p be the first gap,

p=min G(l, u), (14)

and define the ! sequence by

!r={ir

ir&1
for ir< p;
for ir>p.

(15)

Then we know from Lemma 3 that det B ! >0, and by (11) that the
diagonal of C! is positive. We therefore only have to check that C2 is
satisfied by C! since then we have det C! >0 by induction and, therefore,
at least one positive term in the sum in (12).

Let us first show that when the conditions of Theorem 6 are satisfied,
then G(l, u) is nonempty so that p as given by (14) is well defined. If there
is a q such that iq=u, then fq=0 and C2 states that

iq&dq<iq&dq . (16)

But note that iq&dq+k=iq+r t (iq)=l+k so that iq&dq=l. The condi-
tion (16) therefore tells us that iq&dq<l so that G(l, u) must contain at least
one element. On the other hand, if there is no q such that iq=u, then
u # G(l, u). For the rest of the proof we only consider ! as given by (15).

Let us next show that C2 is satisfied by C ! for the values of q such that
tiq=tz . If fq=0, C2 will not apply to !q in \ since fq=0 means that either
is m { (tz)=m t (tz)&1=m\ (tz) or iq=u. In both cases we have m\ ( p!q)=
m{ (\!q).

If fq>0, we note that tiq=\!q and r t (iq)=r\ (!q), so that d� q=dq , where
d� q is the value of the parameter dq for C! . On the other hand, we have
l\ (!q)=l t (iq)&1, and m\ (!q)=m t (iq)&1, so that f� q=fq&1, where f� q is
the value of fq for C! . Since we also have !q&dq=iq&dq (the inequality
iq&dq<l is always true) and !q=iq&1, we find

!q&dq=iq&dq<iq&dq&fq=!q&dq&( fq&1)=!q&d� q&f� q .

Hence, C2 is satisfied by !q also in this case.
Finally, we need to show that C2 is also satisfied by C! for the values

of q for which tiq>tz . So suppose that tiq=ty>tz and m t (ty)<m { (ty). By
(15) we have !q=iq&1, and by assumption we also have

iq&dq<iq&dq&fq . (17)
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Since \ is formed by dropping one knot at tz from t, we see that f� q=fq and
d� q=dq . Therefore, if iq&dq>p (recall that p is the first gap in G(l, u)), we
have !q&dq=iq&dq&1 and, therefore,

!q&dq=iq&dq&1<iq&dq&fq&1=!q&fq&dq ,

so that C2 is satisfied.
The only remaining difficulty is the case iq&dq<p. If in addition

!q&dq=iq&dq=iq&dq&fq&1, then it is not a priori obvious that C2 is
satisfied by !q on \ since the minimum fq+1 gaps between iq&dq and iq

guaranteed by (17) could be reduced to only fq gaps between !q&dq and !q .
However, we shall prove below that iq�iq&dq+dq+fq+2; i.e., there are at
least fq+2 gaps.

The hypothesis is that iq&dq<p; then we also have !q&dq=iq&dq and
!q=iq&1. If now r t (iq)>iq&dq&l, then dq=k&r t (iq)�k+l&1&iq&dq .
Using the fact that tiq>tz , it now follows, as required, that

iq�(k+l )+l t (iq)+1�iq&dq+dq+fq+2.

If instead r t (iq)�iq&dq&l, we exploit the fact that there is an r with
1�r�q&dq such that ir=l (this is true since iq&dq<p). Since there is no
gap between l and iq&dq , we have

iq&dq&l=q&dq&r, (18)

which means that q�r+dq+r t (iq)=r+k. But since :jr(ir)>0 and there is
a new knot at tz , we know from Lemma 4 that {jr+k�{jr+k>tz . Lemma 4,
combined with the fact that :jq(iq)>0, also tells us that either is {jq<tiq or
{jq=tiq and r t (iq)�r{( jq). In the former case ({jq<tiq) we have tz<{jk+r�
{jq<ty=tiq since q�k+r. Hence, there are at least q&k&r+1 knots of
{ in the interval (tz , ty). It follows that

iq�(l+k)+(q&k&r+1)+( fq+1)=q+l&r+fq+2,

From (18) we then obtain iq�iq&dq+dq+fq+2. In the latter case ({jq=tiq),
the number of knots of { in (tz , ty) is at least q&k&r+1&l{( jq)&1. Hence,

iq�(k+l )+(q&k&r+1&l{( jq)&1)+l t (iq)+1

=q+l&r+1+l t (iq)&l{( jq).

But the inequality r t (iq)�r { ( jq) means that l t (iq)&l { ( jq)�m t (ty)&
m{ (ty)�fq+1. Therefore iq�q+l&r+fq+2=iq&dq+dq+fq+2 in this
case too. K

This sequence of lemmas also finishes the proof of Theorem 6.
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4. An Application of Theorem 6

Many properties of B-splines are special cases of discrete B-spline
properties. It is therefore natural to try to obtain the total positivity of the
B-spline collocation matrix from Theorem 6, see Jia's Remark 3 in [2].
This is indeed possible and quite simple, but before we consider this, let us
introduce some notation. An alternative derivation, also based on knot
insertion, can be found in [1].

Given n real function g1 , g2 , ..., gn , and n points (xi)
n
i=1 in their common

domain, we denote the collocation matrix with elements (gj (xi)) by

M \x1 , ..., xn

g1 , ..., gn+ , (19)

and its determinant by

D \x1 , ..., xn

g1 , ..., gn+ . (20)

Recall that the interpolation problem

:
n

j=1

cjgj (xi)=yi for i=1, 2, ..., n,

has a unique solution if and only if the determinant in (20) is nonzero. If
the functions [gj] are B-splines, the following theorem provides important
information about the matrix in (19).

Theorem 11. Let { be a knot vector with {j<{j+k for all j, let [Bj] be
the corresponding B-splines, and let (xi)

n
i=1 be n distinct real numbers. Then

D \ x1 , ..., xn

Bj1 , ..., Bjn+�0,

with strict inequality if and only if Bjr(xr)>0 for r=1, 2, ..., n.

Proof. Let t be a knot vector that contains { and in which each number
xr occurs k times. From the definition of discrete B-splines (1), we see that
if tir+1=tir+k&1=xr<tir+k (the last inequality is required when our
B-splines are right continuous), then we have Bj, k, {(xr)=:j, k, { , t(ir). We
therefore have

M \ x1 , ..., xn

Bj1 , ..., Bjn+=A {, t \ i1 , ..., in

j1 , ..., jn+ ,
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and because of C1, we need the diagonal to be positive to have a positive
determinant. We also see that by letting t be a knot vector with sufficiently
many knots between the points (xr), the condition C2 will be automatically
satisfied for our particular choice of the (ir). The result therefore follows
from Theorem 6. K

In the case where jr=r for all r, Theorem 11 is usually referred to as the
Schoenberg�Whitney theorem. It tells us that if the spline interpolation
problem

:
n

i=1

ciBi, k(xr)=yr for r=1, 2, ..., n,

is to have a unique solution, then the interpolation point xr must be inside
the support of Br, k .

A familiar extension of this result ensures unicity event when the inter-
polation points are allowed to coalesce; i.e., derivatives are interpolated as
well. As we shall see, this result is also an easy consequence of Theorem 6.
If we have coalescent interpolation points (xr), the interpolation problem
is

:
n

i=1

ciD +rBi, k(xr)=yr for r=1, 2, ..., n,

where +r is the number of integers j that satisfy j<r and xj=xr ; in other
words, +r=lx (r). Since we are considering splines of order k, we must of
course have +r�k&1 for all r. If this problem is to have a unique solution,
the coefficient matrix

C=(D +iBj, k(xi))n
i, j=1

must be nonsingular.
Since the derivatives of a B-spline may be negative at a point, the matrix

C is not necessarily totally positive. On the other hand, if the submatrix V
is formed by rows (ir)

m
r=l and columns ( jr)

m
r=1 , without leaving ``gaps'' in

the derivatives at a point, then we do have det V�0.

Theorem 12. Let { be a knot vector with {j<{j+k , and let C be the
matrix

C=(D +iBj, k(xi))n
i, j=1 , (21)
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where +i{*[ j | j<i and xj=xi]. Let V be the submatrix of C formed by
taking rows i1<i2< } } } <im and columns j1< j2< } } } < jm that satisfy the
conditions

ir&1<ir&1 implies xir&1<xir for r=2, 3, ..., m. (22)

Then

det V�0,

with strict inequality if and only if for each r # [1, 2, ..., m] one of the following
two conditions are satisfied,

(i) Bjr , k(xir)>0,

(ii) {jr=xir and D +rBjr(xir){0.

Proof. The idea behind the proof is again to identify V with a submatrix
of a discrete B-spline collocation matrix. Set zr=xir for r=1, 2, ..., m. Then
we have

V=(Dlz(r)Bjq, k(zr))m
r, q=1.

Form the knot vectors t as in the proof of Theorem 11; i.e., let t contain
at least both { and the interpolation points (zr) as subsequences, but such
that all distinct knots in t occur exactly k times (we shall see below that
it may be convenient to let t contain even more knots). Let a be an inter-
polation point and define s and p by

zs&1<a=zs= } } } zs+p<zs+p+1 ,

so that we interpolate up to p th order derivatives at a. Define the integer
!s by

t!s&1<a=t!s= } } } t!s+k&1<t!s+k .

From Lemma 1 we then have

DlBj, {(a)=
(k&1) } } } (k&l )

hl {l:j, k, { , t(!s+l ) for l=0, 1, ..., p,

where h=t!s+k&t!s=zs+p+1&zs , and {:j, k(i)=:j, k(i)&:j, k(i&1). If we
denote row s of V by Bjr(zs), this means that
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Bjr(z1)
b

Bjr(zs)

det V=det
DBjr(zs+1)

b

D pBjr(zs+p)
b

D +mBjr(zm)

Bjr(z1)
b

:jr(!s)

=
(k&1) p (k&2) p&1 } } } (k&p)

h p( p+1)�2 det
{:jr(!s+1)

. (23)
b

{ p:jr(!s+p)
b

D+mBjr(zm)

Now, we have {l d(i)=�l
j=0 (&1) j ( l

j) d(i&j). Therefore, if we set !s+l=
!s+l for l=1, ..., p, then by elementary properties of the determinant, the
right-hand side of (23) reduces to

Bjr(z1)
b

:jr(!s)

det V=
(k&1) p (k&2) p&1 } } } (k&p)

h p( p+1)�2 det
:jr(!s+1)

. (23)
b

:jr(!s+p)
b

Bjr(zm)

If we do this for all the distinct interpolation points, we see that

det V=c det A _!1 , ..., !m

j1 , ..., jm &,

where A=A{ , t is a discrete B-spline collocation matrix, and c some
positive constant. Hence, by Theorem 6, the matrix V is nonsingular if and
only if :jr(!r)>0 for r=1, ..., m (we can always satisfy C2 of Theorem 6 by
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letting the knot spacing in t be small). From Lemma 4 we see that
:jr(!r)>0 if and only if either (i) {jr<t!r<{jr+k , or (ii) {jr=t!r and r{( jr)�
r t (!r) (the situation :jr(!r)>0 and {jr+k=t!r+k and l t (!r+k)�l { ( jr+k)
can always be avoided by choosing t appropriately). The former condition
is equivalent to Bjr, {(zr)>0. The latter condition is equivalent to {jr=zr

and r { ( jr)�k&1&l z (r) since lz (r)=l t (!r) and l t (!r)+r t (!r)=k&1. But
this is in turn equivalent to {jr=zr and D (lz(r))Bjr(zr){0 from which the
result follows. K
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